Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers.
نویسندگان
چکیده
An appealing definition of the term "molecule" arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder.
منابع مشابه
Highly Anisotropic Conjugated Polymer Aggregates: Preparation and Quantification of Physical and Optical Anisotropy
Controlling morphological order of conjugated polymers over mesoscopic and microscopic scales could yield critical improvements in the performance of organic electronics. Here, we utilize a multimodal apparatus allowing for controlled solvent vapor annealing and simultaneous wide-field epifluorescence microscopy to demonstrate bottom-up growth of morphologically ordered anisotropic aggregates p...
متن کاملQuantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole
The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...
متن کاملAromatic-ring-layered polymers composed of fluorene and xanthene
INTRODUCTION Conjugated polymers show intriguing properties such as electrical conductivity,1–4 electroluminescence5–9 and chemical-sensing ability.10–12 Synthesis of new conjugated polymers is an important subject in polymer chemistry as well as in material chemistry, owing to their potential applications in optoelectronic devices. Generally, p-electrons are delocalized throughout the conjugat...
متن کاملStructure—Property Relationships for Exciton Transfer in Conjugated Polymers
The ability of conjugated polymers to function as electronic materials is dependent on the efficient transport of excitons along the polymer chain. Generally, the photophysics of the chromophore monomer dictate the excited state behavior of the corresponding conjugated polymers. Different molecular structures are examined to study the role of excited state lifetimes and molecular conformations ...
متن کاملاتلاف در مدارهای الکتریکی کوانتومی مزوسکوپی RLC
The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated. Taking the Caldirola-Kanai Hamiltonian in studding quantum mechanics of dissipative systems, we obtain the persistent current and the energy spectrum of a damped quantum LC-design mesoscopic circuit under the influence of a time-dependent external field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 41 شماره
صفحات -
تاریخ انتشار 2015